
CyHELICS
Senior Design Team 28

Design Document

Dr. Gelli Ravikumar

Justin Templeton

Tyler Atkison

Kaya Zdan

Zach Hirst

Tommy Keeshan

Matt Nevin

sdmay24-28@iastate.edu

sdmay24-28.sd.ece.iastate.edu

December 1st, 2023 | Revision 1.0

mailto:sdmay24-28@iastate.edu

Executive Summary

Development Standards & Practices Used

● HELICS and pandapower use an open source BSD-3 clause license.
● OpenDSS is open source, no listed license.
● MITRE ATT&CK Framework is an industry standard knowledge base for use in pentesting,

gap assessments, threat intelligence/hunting, and more.
● OWASP Top 10 as a security guidance standard.
● Python is an industry standard interpreted scripting language.

Summary of Requirements

Functional Requirements:

● Use CyHELICS to combine multiple substream programs and run concurrently
● Include both power grid model analysis tools and cyber security focused programs.
● The simulation will be capable of handling multiple attack simulations, based on the

OWASP top 10.
● Create a power grid with several transmission models that connect with several distribution

models and demonstrate proper power flow.
● Power Grid will include multiple load types.
● The power grid interface will be able to simulate different grid set ups.
● The simulation will be tested in a VM environment.
● The simulation will be set up in a dockerized environment.

Nonfunctional Requirements:

● The interface must be easy to use for non technical users (city planners, grid designers).
● The user must be able to select how much of the grid they want to simulate an outage for,

with specialized attacks for each one.
● The simulation must give feedback to the user about the state of the simulation (failed,

complete, in progress etc.)

Applicable Courses from Iowa State University Curriculum

Cyber Security:

CPRE 230

CPRE 231

CPRE 308

CPRE 489

Electrical Engineering:

EE 303

EE 455

EE 456

EE 457

New Skills/Knowledge acquired that was not taught in courses
● Docker knowledge
● Flask usage
● Connecting multiple programs to accomplish one task (ie HELICS, OpenDSS, Pandapower)
● HELICS usage
● OpenDSS distribution grid design and analysis
● OpenDER electric vehicle and battery modeling and analysis
● Pandapower transmission grid design and analysis

Table of Contents

1 Team and Problem Statement

1.1 TEAM MEMBERS 8

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 8

1.3 SKILL SETS COVERED BY THE TEAM 9

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 9

1.5 INITIAL PROJECT MANAGEMENT ROLES 9

2 Requirements and Engineering Standards

2.1 Problem Statement 10

2.2 Requirements & Constraints 10

2.3 Engineering Standards 10

2.4 Intended Users and Uses 10

3 Project Plan

3.1 Task Decomposition 12

3.2 Project Management/Tracking Procedures 12

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 12

3.4 Project Timeline/Schedule 13

3.5 Risks And Risk Management/Mitigation 14

3.6 Personnel Effort Requirements 15

3.7 Other Resource Requirements 16

4 Design

4.1 Design Content 17

4.2 Design Complexity 18

4.3 Modern Engineering Tools 19

4.4 Design Context 19

4.5 Prior Work/Solutions 20

4.6 Design Decisions 20

4.7 Proposed Design 20

4.7.1 Design 0 (Initial Design) 21

4.7.2 Design 1 (Design Iteration) 22

4.8 Technology Considerations 23

4.9 Design Analysis 23

5 Testing

5.1 Unit Testing 24

5.2 Interface Testing 24

5.3 Integration Testing 24

5.4 System Testing 24

5.5 Regression Testing 25

5.6 Acceptance Testing 25

5.7 Results 25

6 Implementation 26

7 Professionalism

7.1 Areas of Responsibility 27

7.2 Project Specific Professional Responsibility Areas 28

7.3 Most Applicable Professional Responsibility Area 29

8 Closing Material

8.1 Discussion 30

8.2 Conclusion 30

8.3 References 30

8.4 Appendices 32

8.5 Team Contract 32

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

● HELICS: a co-simulation tool that allows multiple simulators to run simultaneously and off
of each others’ results. This tool is necessary because otherwise, the simulators running by
themselves would not accurately portray a whole and singular electric power grid.

● Pandapower: a tool that simulates the power generation and transmission of a power grid.
● DSS_python: a tool that simulates the power distribution and load characteristics of a

power grid, python wrapper for OpenDSS.
● OpenDSS: an electric power distribution system simulator used to design distribution

systems and simulate their usage.
● OpenDER: a package designed for OpenDSS that can model batteries and electric vehicles

as load criteria for a distribution grid.
● Kali: a red team-oriented operating system that will help develop new attack methods and

modules, as well as utilize pre-existing ones.
● Docker: Containerized solution to run programs on many platforms easily. Simple to create,

tear down, and connect environments.
● Virtualization: Running a guest operating system on a host machine, available to Iowa State

Students to safely run their programs.
● Flask: A basic python web application package that can be used with both simple and

complex applications alike. It allows many other packages to be used on the python
platform to run complex methods.

● Ubuntu: the most popular and flushed out linux distribution that is one of the two industry
standards besides for Red Hat linux.

Figure 1: Basic Overview of Project

Figure 2: Complete Flowchart of Operation

1 Team, Problem Statement, Requirements, and Engineering
Standards

1.1 TEAM MEMBER

Justin Templeton

Tyler Atkison

Kaya Zdan

Zach Hirst

Tommy Keeshan

Matt Nevin

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Coding proficiency

Power grid analysis and creation

Analysis of cyber attacks

HELICS proficiency

OpenDSS proficiency

OpenDSS proficiency

Generation of cyber attacks

Web Development (frontend and backend)

Docker

OpenDER

PandaPower

1.3 SKILL SETS COVERED BY THE TEAM

Coding proficiency (All)

Power grid analysis and creation (Matthew,
Thomas)

Analysis of cyber attacks (Kaya, Tyler, Zachary,
Justin)

Generation of cyber attacks (Kaya, Tyler, Zachary,
Justin)

Web Development (frontend and backend) (Kaya,
Tyler, Zachary, Justin)

HELICS proficiency (Kaya, Justin)

OpenDSS proficiency (Matthew, Thomas)

OpenDER proficiency (Matthew, Thomas)

Pandapower proficiency (Matthew, Thomas, Kaya)

Communication (All)

Docker (Justin

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

AGILE - SCRUM (SPRINT BASED)

1.5 INITIAL PROJECT MANAGEMENT ROLES

Justin - DevOps Manager and Scrum Master

Kaya - HELICS Connection Manager

Zachary - Cyber Attack Simulation Manager

Tyler - Cyber Attack Generation Manager

Matthew - Powergrid Analysis Manager

Thomas - Powergrid Creation Manager

Name Role Contributions

Justin DevOps Manager and Scrum Master Created development Docker instances for
all members virtual machines and set up
running environment for project

Kaya HELICS Connection Manager Experimented and researched using
HELICS, Pandapower, and DSS_python, and
setting up connecting the three tools
together.

Zachary Cyber Attack Simulation Manager Helped generate the list of preconfigured
attacks against the grid. Developed
network/machine configuration. Also
developed the attack deployment website
used to configure new and initiate
preconfigured attacks.

Tyler Cyber Attack Generation Manager Helped create a list of attack vectors and
attacks to be used. Also helped research
attacks and how they could be used in our
environment.

Matthew Powergrid Analysis Manager Ran simulations of existing grid examples
for both distribution and transmission
models through Pandapower and OpenDSS.

Thomas Powergrid Creation Manager Created and ran simulations of distribution
models along with distributed energy
resources for loads and generation using
OpenDER and OpenDSS.

2 Requirements and Engineering Standards

2.1 PROBLEM STATEMENT

Cyber attacks against the power grid are a growing concern. Our group is creating a virtual
distribution & transmission power grid that we can simulate cyber attacks against to help showcase
potential attack and defense scenarios. It ensures that the companies running their power grid have
substantial protection against attacks.

2.2 REQUIREMENTS & CONSTRAINTS

Functional Requirements:

● Use CyHELICS to combine multiple substream programs and run concurrently
● Include both power grid model analysis tools and cyber security focused programs.
● The simulation will be capable of handling multiple attack simulations, based on the

OWASP top 10.
● Create a power grid with several transmission models that connect with several distribution

models and demonstrate proper power flow.
● Power Grid will include multiple load types.
● The power grid interface will be able to simulate different grid set ups.
● The simulation will be tested in a VM environment.
● The simulation will be set up in a dockerized environment.
● The user must be able to select how much of the grid they want to simulate an outage for

in the flask frontend, with specialized attacks to take out the varying percentages of the
grind. This will purely interact with the Kali box to send the various attacks.

Nonfunctional Requirements:

● The interface must be easy to use for non technical users (city planners, grid designers).
● The user must be able to select how much of the grid they want to simulate an outage for,

with specialized attacks for each one.
● The simulation must give feedback to the user about the state of the simulation (failed,

complete, in progress etc.)

2.3 ENGINEERING STANDARDS
● HELICS and PandaPower use an open-source BSD-3 clause license.
● OpenDSS is open source, with no listed license.
● MITRE ATT&CK Framework is an industry-standard knowledge base for pentesting, gap

assessments, threat intelligence/hunting, and more.
● OWASP Top 10 as a security guidance standard.
● Python is an industry-standard interpreted scripting language.

2.4 INTENDED USERS AND USES

The people who benefit from the results of our project are the power grid companies, the city, and
the general population. It ensures that the companies running their power grid have substantial
protection against attacks. Those who will be directly interacting with the software or its
productions are as follows: Power grid companies, local utilities, city planners, maintenance
companies, city politicians, city citizens, and researchers. This output data will be used to find
weaknesses in the input grids and to test future expansions of the grids, checking for errors along
the way.

3 Project Plan

3.1 TASK DECOMPOSITION

Our project will have a structured sequence of events. Beginning with the setup of virtual machines
within a dockerized environment. We then establish connections between HELICS, Pandapower,
and OpenDSS using the virtual machines we have already created. Followed by crafting an electric
grid diagram for visualization. Going deeper into electrical grid design, we will create smaller
transmission and distribution grid sections. Once they are set up we will then simulate these with
an emphasis on how they interact with each other. The security aspects of our project are addressed
through a Kali purple box in the company with an implementation of Security Onion for defense.
Finally, we will implement a front-end website to enhance user experience.

3.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team decided upon an Agile Project Management approach. This gives us the flexibility to
accommodate multiple adjustment periods in our project. The adjustment periods ensure a smooth
transition for our team to acclimate to the proposed software. Agile development allows for small
incremental parts of our project to be developed and tested. As goals and tasks become more
advanced, the agile management structure allows us to break these tasks down into smaller
attainable goals. To streamline our Agile management style, we will be using Gitlab for version
control and centralized project management.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Our team has identified milestones that we deem fit for evaluation criteria. First, in the preliminary
grid phase, we simulate pre-existing transmission, distribution, and load models, ensuring they
simulate seamlessly through the HELICS software. Moving forward into the grid design phase, we
dive into designing multiple transmission models, ensuring proper power flow, and conducting
analyses encompassing power flow, fault simulations, harmonics, and unbalanced power flow. We
also will make distribution models, capable of accommodating dynamic loads, employing both
linear and nonlinear models. A dynamic load profile is created, emulating real-world scenarios,
including electric vehicle usage and residential neighborhood power consumption, with
fluctuations based on actual data. In the simulation setup phase, each simulation is dockerized
individually. The attack modules phase entails setting up a Kali box for executing targeted attacks
against the simulated grid and designing a user-friendly frontend interface to streamline attack
execution. Lastly, in the defense phase, we deploy Security Onion to detect and counteract grid
attacks, implement automated defense mechanisms, centralize logs in a database, and establish
rules to swiftly identify and address potential issues. These milestones collectively shape our
project's progression, ensuring its success and security at each stage.

3.4 PROJECT TIMELINE/SCHEDULE

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

As our entire project will be done within a dockerized VM environment, there will not be
significant risks associated with this project.

Risks:

● Losing our VMs and our progress - 0.3
○ Mitigation: Create regular backups and VM snapshots

● Using too many resources, causing the department to be mad at us - 0.3
○ Mitigation: Being aware of our resources and making sure nothing runs out of

hand

1/22-29 2/5-12 2/19-2
6

3/4-11 3/18-25 4/1-8 4/15-22 4/29-5/6 5/13-20

Analyze pre-existing
transmission and distribution
models

Deliver by
1/29

Analyze the power flow and
design of models

Deliver
by 2/12

Co-Simulation between
transmission and distribution
models

Deliver
by 2/12

Working simulation Deliver
by 3/11

Set up VM and Dockerized
Environments

Deliver by
1/29

Create and run attacks Deliver
by 4/22

Frontend for attack modules Deliver
by 5/20

Integrating security onion Deliver
by 4/8

Using security onion to detect
the attacks

Deliver
by 5/20

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Justin Hrs Kaya Hrs Matt
Hrs

Tommy Hrs Tyler
Hrs

Zach Hrs Total Hrs

Set up and connect
HELICS with
pandapower and
OpenDSS

20 50 15 15 5 5 110

Analyze the power flow
and design of models

0 0 5 5 0 0 10

Create smaller sections
of the transmission and
distribution grid

5 5 30 30 5 5 80

Co-Simulation between
transmission and
distribution models

2 2 2 2 2 2 12

Create a working
simulation

20 20 10 10 20 20 100

Create a Kali/red team
box that can perform
attacks against the
power grid

2 2 0 0 2 2 8

Set up security onion to
defend against the
attacks against the
power grid

0 0 0 0 20 0 20

Frontend for attack
modules

5 5 0 0 5 5 20

3.7 OTHER RESOURCE REQUIREMENTS

Our team has identified a few other resource requirements for our project to function effectively. At
a base, we will need access to the university's High-Performance Compute Cluster, which serves as
our backbone for testing complex power designs. Additionally, our team will need a multitude of
virtual machines. We have identified a few types of machines we will need. The first is a Kali Linux
purple pentesting box for heading the cyber attack section of our project. We will need a few
Ubuntu and Windows 10 machines for hosting HELICS, Panda Power, & Open DSS. Finally, we will
need a larger virtual machine to host Security Onion for network monitoring.

4 Design

4.1 DESIGN CONTENT

Our design content includes the design and architecture of our project. This includes the software
architecture of the interworking components, as well as the design of our simulated electrical grid.

For the software architecture, we need to establish the connections between our various open
source software systems, HELICS, pandapower, pyDSS, OpenDER, establish the docker containers,
and connect this system to a user interface, where the client will be able to launch the attack
modules and run the simulation of the grid.

As for the electrical design, we need to design an integrated power grid that includes various
transmission lines on PandaPower with varying voltages integrated with OpenDSS for distribution.

4.2 DESIGN COMPLEXITY

1. Simulation
a. We will be using a Dockerized environment for our simulation to function on

many different types of ecosystems with minimal adjustments being made. These
Docker containers will utilize a frontend, HELICS, PandaPower, and Python-DSS
instances to properly simulate a power grid.

2. Grid Creation

a. Our Solution will come out of the box with a premade power grid that users can
experiment with. We also would like to allow users to input their grids, but this
feasibility needs to be tested.

3. Attack Vectors

a. We will be utilizing the MITRE ATT&CK framework to determine a list of common
attack vectors to be launched against the simulated grid. These attack vectors are:

i. Command and control backdoor that allows us to manipulate the grid by
changing electrical values

ii. Keystroke injection attack that will be carried out against a machine
jumped onto the network, which will then be infected to change/mess
with the grid

iii. SYN flood attack to introduce false network traffic & bog down the
network

iv. Or other DDoS variations

v. Malware downloaded on the network through a what-if scenario where a
user has successfully phished

vi. “Time Bomb”

vii. Solarwinds (infecting the top of the supply chain e.g adding in infected
code through the web app)

viii. Man in the middle

4.3 MODERN ENGINEERING TOOLS

● HELICS: a co-simulation tool that allows multiple simulators to run simultaneously and off
of each others’ results by allowing each software to speak the same language. This tool is
necessary because otherwise, the simulators running by themselves would not accurately
portray a whole and singular electric grid.

● Pandapower: a tool that simulates a transmission grid.
● DSS_python: a tool that portrays a distribution grid, python wrapper for OpenDSS.
● OpenDER: a tool that portrays batteries connected to the grid. Can be used to simulate

EV’s.
● Kali: a red team-oriented operating system that will help develop new attack methods and

modules, as well as utilize pre-existing ones.
● Docker: Containerized solution to run programs on many platforms easily. Simple to create,

tear down, and connect environments.
● Virtualization: Running a guest operating system on a host machine, available to Iowa State

Students to safely run their programs.
● Flask: A basic python web application package that can be used with both simple and

complex applications alike. It allows many other packages to be used on the python
platform to run complex methods.

● Ubuntu: the most popular and flushed out linux distribution that is one of the two industry
standards besides for Red Hat linux.

4.4 DESIGN CONTEXT

Area Description Examples

Public health,
safety, and
welfare

Many health and safety solutions rely on the
power grid to function, from hospitals to homes.

Increased power grid reliability due to
decreased chance of cyber-attacks
impacting users.

Global,
cultural, and
social

People of all groups, within cities and rural
areas, expect electricity to be delivered at all
times if needed.

Less power outages caused by cyberattacks.
More efficient designs can be created.

Environmental Reduced attacks on power grids will lead to less
power waste. This will also help with the overall
design of the grid to be safer and more efficient.

Protecting power grids from cyber attacks
will decrease the need for generators.
Using the principle of economies of scale,
this will waste less fuel.

Economic If the electric grid gets taken down or disabled
by attackers, it will result in financial losses for
the power companies and any companies using
that grid.

Protecting against cyber attacks will allow
less outages and economic loss.

4.5 PRIOR WORK/SOLUTIONS

There are a couple papers that did similar projects to ours that our client suggested we look into.
They are:

● HELICSAuto: Automating the Development of Cyber-Physical Co-Simulation Framework
for Smart Grids

○ This paper delves into automating the HELICS API, and tested it’s usage by
simulating Pandapower, PowerWorld, OpalRT, and PyDNP3 with Helics.

○ This shows us that Pandapower can be utilized with HELICS, as well as gives
examples of other similar programs, but it is not implementing a full electric grid
nor simulating cyber attacks on it.

● Defense-in-Depth Framework for Power Transmission System against Cyber-Induced
Substation Outages

○ This paper takes an IEEE 14 bus system and uses it to evaluate cyber attacks. This
perspective of this paper focuses on the defensive side, and what can be done to
protect an electric grid against a cyber attack, as well as what portions of the grid
need to be particularly paid attention to. The IEEE 14 bus system was simulated
using MatLab 2019a.

○ This paper is similar to our project in the sense that we are both simulating attacks
against a power grid to check for weaknesses, however our project will go into

specific types of attacks, as well as using tools such as HELICS, Pandapower, and
DSS_python to simulate a more accurate and large scale power grid.

● Next-Generation CPS Testbed-based Grid Exercise - Synthetic Grid, Attack, and Defense
Modeling

○ This paper focuses on creating a test-bed environment for the industry to practice
incident response for power grid cyber attacks. This paper is the most similar to
our project, however still has some differences.

○ The program in the paper focuses on how specific parts of the power grid will go
offline in the events of an attack, to help simulate a real time attack against a
power grid. Our project will focus more on how specific attacks will fare against the
power grid, as well as allowing different types of power grid models to be tested
against these attacks.

4.6 DESIGN DECISIONS

● Run each program in its own Docker container in order to keep different packages separate.
Keeping the transmission and distribution grids in separate Docker environments also
makes the simulation more accurate as these in reality would be separate machines.

● Run the same category of programs in their own virtual machines, because it will be easier
to perform attacks on the virtual machines, and simulate disengaging certain parts of the
grid.

● We’ve decided on the open source simulators that we did, since it was suggested by our
advisor, many research papers have used the same tooling, and since they’re open source,
they incur no fees.

4.7 PROPOSED DESIGN

● We have experimented using HELICS, pandapower, dss_python (python wrapper for
openDSS), and OpenDSS.

● We have dockerized containers for HELICS, pandapower and dss_python and are
continuing to make improvements.

● We are starting experimentation with connecting HELICS, pandapower and dss_python to
get a fully functioning grid.

● We are currently designing a basic grid layout.
● We are identifying potential attack vectors.
● We got access to the client provided virtual machines and are setting them up.

4.7.1 Design 0 (Initial Design)

Design Visual and Description

This initial design included sectioning off each program into its own virtual machine Ubuntu box.
dss_python is used to simulate our distribution systems, and is used in conjunction with
pandapower, a simulator for our transmission system. The transmission system is how the high
voltage energy moves across the grid, whereas the distribution system is how the voltage gets
converted to lower voltages at substations to allow for distribution to all of the end users on the
grid. These systems communicate with each other through HELICS, which facilitates the
communication and timing of the simulation results. OpenDER provides dss_python with electric
vehicle information to add more of a strain on the power grid, as well as mimic a real life scenario
now that EV charging is becoming more widespread. This will only communicate with the
distribution simulation (dss_python) because it is one of the end “users” that are on the grid and
only needs to interact with the distribution simulation. HELICS communicates the results of the
simulation with our flask frontend, which will be our user interface that allows clients to run attack
modules against the grid simulation. The “Time Sync” arrows are information that HELICS sends
out to the individual simulations to make sure they are stepping in the correct time increments and
making sure all simulations are at the same time step. The time will be stepped by default in
milliseconds. This is important as this is what will help it simulate an energy grid in real time, with
data mimicking real world use. When an attack module is chosen and executed, this command will
be sent to a Kali box that will run this command against the grid simulation.

Functionality

This current design satisfies all of the outlined requirements.

4.7.2 Design 1 (Design Iteration)

The major change made was modifying the virtual machine structure from including each program
in its own virtual machine, to having each program included in one virtual machine.

This change was made for:

● Simplicity, since it’s easier to manage one virtual machine with all of the programs in it,
rather than tons of virtual machines all talking to each other.

● This will also result in easier connections, since we won’t have to manage the
communication between several virtual machines. All of the connections will be done over
the localhost.

4.8 TECHNOLOGY CONSIDERATIONS

● Using Docker instances makes the overall design much more complex, but makes it easy to
deploy on a wide range of platforms, from servers of different architectures or operating
systems.

● Using a Docker shared volume comes with a few downsides when it comes to how each
instance of the program gets pushed to the Docker instances, but this makes it easy to keep
network traffic clean and only related to the simulation.

● Having the network traffic occur over localhost allows for it to be sniffed on the network -
Docker does have a way to do network traffic inside of the Docker Daemon, but this would
make the simulation awfully unrealistic and cyber attacks near impossible.

4.9 DESIGN ANALYSIS

Our first design uses multiple VMs, which would work as well, but would add a lot of complexity,
setup time, and confusion to the overall design of the system. This unneeded complexity would
make the project much harder to implement and explain both to other developers and outside
observers attempting to understand it. Using Dockers will have the connections made to the same
host, but on different ports that each App is running on.

Our design will work with the existing softwares. We have HELICS sending the results from its
Docker instance with Frontend and displaying graphs and other data on said Frontend. There are
research papers that have used HELICS alongside PandaPower and OpenDSS, so they have worked
together in the past using older versions and wrappers; we want it to work in a Dockerized
environment which will be much more adaptable for others to use. We know how to use
PandaPower and OpenDSS. We are currently trying to figure out how to use HELICS itself in order
to connect the two - which is its main purpose.

5 Testing
The CyHELICS project focuses on simulation integration between several softwares in real time.
Our project proposes a few unique software complications that will need to be tested extensively.
Due to the Dockerized environment we will have predominantly unit testing, integration testing,
and system testing. Unique challenges that we will face during the testing phase of our design will
include making sure that data is properly and efficiently transferred between softwares, making
sure that each software correctly interprets that data transferred, and that our system works
correctly as an entire system.

5.1 UNIT TESTING

Unit Testing will be done by making sure that all software packages can return their versions.
Checking for errors at this step will make sure that all software packages are installed correctly on
their respective Docker containers. Making sure that Docker properly sets up the shared backend
“/app” between the Dockers is also critical, but easy to do with checking the Docker shared volume
directory. Ensuring that all Docker containers are able to talk to one another is vital, this can be
done through a series of pings on localhost ports to ensure that they are opened by the Docker
daemon. We can achieve this by a bash or python script whose results can be shown on the front
end.

5.2 INTERFACE TESTING

We need to keep close track of what information is being sent between the Docker containers in
order to make sure that there are no mistranslations in the system. We will set up the expected
values to be sent out of the containers and make sure that valuesF are the correct type (integers are
not strings, etc.). These tests can be run using packages such as pytest.

5.3 INTEGRATION TESTING

We will test the integration through testing HELICS, as HELICS requires all software (pandapower,
python_dss, Docker, Flask frontend) to be correctly integrated with each other to work. Since
HELICS is a bridge software, if one of the software components does not work, HELICS will not
function properly. These tests will be run through a series of basic calculations to ensure correct
output. The results of HELICS will be displayed on a Flask frontend application, which will further
display the proper connection between HELICS and the frontend.

5.4 SYSTEM TESTING

5.5 REGRESSION TESTING

We are using Docker to ensure that new additions and features can be added at any point. It is
rather easy to add a new Docker container to the existing nodes that we have set up. Altering the

code will be easy to add new features with Docker as its connections will be made over localhost.
We will test the localhost ports for the connections being established.

We need to ensure that the existing features are not broken by new Docker containers being added,
but due to the nature of the hardcoded port values, unless the new addition is misconfigured, it will
run as intended.

5.6 ACCEPTANCE TESTING

Our client has been working with us throughout the semester to ensure that we are using the
correct tools in order to complete the tasks. Building the correct framework out of the correct
libraries is critical to getting the job done. We will test whether the requirements are met to the
client’s satisfaction and see if the pre planned attacks fulfill the planned goals. This will be done by
setting a baseline to achieve success using a small grid. The small grid in question is called “123Bus,”
it’s a small scale electric grid model that has 123 bus connections. 123Bus is a small example model
provided by OpenDSS.

Our tests ensure that our product can continue to be developed and help users determine the
security of their power grids, regardless of their system specifications or tech stack. For compliance
with the project, we must make sure that all parts of the system are able to function individually
and communicate with each other - which will lead us to a proper simulation. We can test this
through a myriad of ways and present it to the user when a test is successful at affecting the grid.
For example, when a certain test is established the diagrams produced by PandaPower, OpenDSS,
and Open DER will adjust to those conditions so we will see changes in the model with line
thickness (shown on the first figure) and the data results on each individual lines (shown on the
second figure).

5.7 RESULTS

Our testing will ensure that upon creation - our project will automatically test itself to ensure that it
will be set up for success and will be able to serve those using it.

6 Implementation
We have started experimenting with connecting HELICS, OpenDSS, Pandapower, the Flask
frontend together, and running it all within Docker. We are working on getting Pandapower and
OpenDSS to communicate with each other with HELICS as the communication facilitator. We have
started experimenting with some basic attacks that we could run against the grid, specifically a SYN
flood.

7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

Area of Responsibility Definition NSPE Canon IEEE

Work Competence Perform work of high
quality, integrity,
timeliness,
and professional
competence.

Perform services only in
areas of their
competence;
Avoid deceptive acts.

Point 6 states that we
must not only maintain
but also improve our
technical competence,
and only complete tasks
if qualified by training,
experience, or have
disclosed all limitations.

Financial Responsibility Deliver products and
services of realizable
value and
at reasonable costs.

Act for each employer or
client as faithful agents
or
trustees.

Point 5 states that we
must be honest and
realistic in our claims
and estimates, and adds
that we should fairly
credit the contributions
of others.

Communication
Honesty

Report work truthfully,
without deception, and
understandable to
stakeholders

Issue public statements
only in an objective and
truthful manner; Avoid
deceptive acts.

Point 9 states that we
should avoid injuring
others' property,
reputation, or
employment with our
actions, rumors, or any
other forms of abuse.

Health, Safety,
Well-Being

Minimize risks to safety,
health, and well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the
public.

Point 1 states that we
should hold paramount
the safety, health, and
welfare of the public .

Property Ownership Respect property, ideas,
and information of
clients
and others.

Act for each employer or
client as faithful agents
or
trustees.

Point 5 includes that we
should fairly credit the
contributions of others.

Sustainability Protect environment and
natural resources locally
and globally.

Point 1 states that we
should comply with
ethical design and
sustainable practices, not

only to the environment,
but also to the public
and their privacy.

Social Responsibility Produce products and
services that benefit
society
and communities.

Conduct themselves
honorably, responsibly,
ethically, and lawfully so
as to enhance the honor,
reputation, and
usefulness of the
profession.

Point 2 states that we
should improve the
understanding of
individuals and society
of the capabilities and
implications of new
technologies, including
intelligent systems.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Responsibility Application Performance

Work Competence Yes Medium

Financial Responsibility No N/A

Communication Honesty Yes High

Health, Safety, Well-Being Yes High

Property Ownership No N/A

Sustainability Yes High

Social Responsibility Yes High

● Work Competence
○ Our project must not be deceptive in its topics, we must all have knowledge about

what types of grids we are working with and how the code connects them.
○ A lot of our project so far has been learning about the project itself, hence this only

deserves a medium.
● Financial Responsibility

○ This project uses a provided testbed for virtualization using VMWare. There are no
costs besides the processing resources used by this project, hence it is not
applicable.

● Communication Honesty
○ While we do not have any stakeholders, we are reporting to our advisor and client

every week on what work we have performed and what will be done in the future.
We also get guidance on how to better achieve the goal of the project. Therefore,
we must do well in our communication with the client for the project to be
successful.

○ We have done a good job with our weekly reports to our client and advisor as well
as meeting with him outside of the regularly scheduled meeting time.

● Health, Safety, Well-Being
○ The power grid has many different uses when it comes to medicine, safety, and

modern civilization. Our project may be used to help develop newer power grids or
modify existing ones in order to make them more secure. We must be
understanding and serious about the changes this could cause and make sure we
emphasize that this project is not the be-all-end-all when it comes to power grid
security checking.

○ We have not really had to show this yet, as we have not gotten to the stage of full
product implementation, but we are aware of the weight this holds.

● Property Ownership
○ Our project does not have any property required to own, therefore this does not

apply.
● Sustainability

○ In relation to the Financial Responsibility of the project, we have to have the
sustainability of the project in mind to make sure that no simulation is kept
running on the virtual machines and wasting needless amounts of energy.

○ We have been keeping tabs on the virtual machines and making sure that there are
no active running programs when we are not working.

● Social Responsibility
○ Similar to Health, Safety, Well-Being, we must be cognizant that the product of this

project will be used to help develop power grids. This means that we must do our
best to be mindful of the impact that this will have on power grid developments
and the social impact and weight that holds.

○ We have not really had to show this yet, as we have not gotten to the stage of full
product implementation, but we are aware of the weight this holds.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

HEALTH, SAFETY, WELL-BEING AND SOCIAL RESPONSIBILITY

This is because the purpose of our project is to benefit the health, safety, and well being of society.
Our project’s goal is to provide a simulator that can help protect the current power grid against
cyber attacks, as well as test potential future designs. Health, safety, well-being and social
responsibility is the backbone of our project.

8 Closing Material

8.1 DISCUSSION

This semester we did a lot of research and familiarized ourselves with the programs that we will be
using for our project, as well as setting up our environment.

We:

● Got our virtual machine environments set up and configured with the programs we
will be using.

● Set up our Dockerfiles so that our programs will be containerized and run with a
Docker compose file.

● Familiarized ourselves with HELICS, PandaPower, OpenDER, and OpenDSS by
watching YouTube tutorials, reading the documentation, and running basic
examples and experiments.

● Researched and developed a list of potential attacks to utilize.
● Attempted preliminary experiments with running a SYN flood against the Docker

containers.
● Set up a basic Flask frontend and configured it to display the HELICS results.

8.2 CONCLUSION

This semester we have done a lot of investigative and experimental research regarding the programs
we will be using in our project (HELICS, Pandapower, OpenDSS, OpenDER), and our goal was to set
up a basic simulation as a proof of concept. Our plan of action for the future will be to use what we
have learned this semester as well as the pre-existing architecture that has been setup to hit the
ground running with our implementation plan to get a functioning complex simulation that meets
our requirements working and then begin testing cyber attacks.

8.3 REFERENCES

● Docker:

[1] T. Donohue, “How To Communicate Between Docker Containers,” Tutorial
Works, Nov. 06, 2020. https://www.tutorialworks.com/container-networking/ (accessed
Oct. 11, 2023).

[2] “How To Share Data between Docker Containers | DigitalOcean,”
www.digitalocean.com.
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-docker-co
ntainers (accessed Oct. 09, 2023).

● HELICS:

https://www.tutorialworks.com/container-networking/

[1] “HELICS documentation — HELICS documentation,” docs.helics.org.
https://docs.helics.org/en/latest/index.html (accessed Sept. 18, 2023).

[1] “GMLC-TDC/HELICS,” GitHub, Nov. 14, 2023.
https://github.com/GMLC-TDC/HELICS (accessed Sept. 18, 2023).

[1] “HELICS-Examples,” GitHub, Oct. 31, 2023.
https://github.com/GMLC-TDC/HELICS-Examples (accessed Sept. 19, 2023).

[1] “Docker,” hub.docker.com. https://hub.docker.com/r/HELICS/HELICS#
(accessed Oct. 04, 2023).

● OpenDSS

[1] “DSS-Python’s API reference — dss_python 0.14.0.dev documentation,”
dss-extensions.org. https://dss-extensions.org/dss_python/ (accessed Nov. 11, 2023).

[1] “DSS-Python: Extended bindings for an alternative implementation of
EPRI’s OpenDSS,” GitHub, Nov. 27, 2023. https://github.com/dss-extensions/dss_python
(accessed Nov. 11, 2023).

● OpenDER

[1] “epri-dev/OpenDER,” GitHub, Oct. 29, 2023.
https://github.com/epri-dev/opender (accessed Nov. 15, 2023).

[1] Y. M. Anandan Wei Ren, Paulo Radatz, Jithendar, “opender: Open-source
Distributed Energy Resources (DER) Model that represents IEEE Standard 1547-2018
requirements for steady-state and dynamic analyses,” PyPI.
https://pypi.org/project/opender/ (accessed Nov. 15, 2023).

[1] “EPRI Home,” www.epri.com. https://www.epri.com/opender (accessed
Nov. 15, 2023).

● PandaPower

[1] “pandapower,” pandapower. https://www.pandapower.org/ (accessed Sept.
15, 2023).

[1] L. T. Scheidler Alexander, “pandapower: An easy to use open source tool
for power system modeling, analysis and optimization with a high degree of automation.,”
PyPI. https://pypi.org/project/pandapower/ (accessed Sept. 15, 2023).

[1] “e2nIEE/pandapower,” GitHub, Dec. 02, 2023.
https://github.com/e2nIEE/pandapower (accessed Sept. 15, 2023).

https://pypi.org/project/pandapower/
https://github.com/e2nIEE/pandapower

8.4 APPENDICES

8.5 TEAM CONTRACT

Team Members:

1) Tyler Atkinson 2) Zach Hirst

3) Thomas Keeshan 4) Matthew Nevin

5) Justin Templeton 6) Kaya Zdan

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
- Wednesdays @ 7:30 - 8:30

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):
- Preferred method of communication is the team discord channel

3. Decision-making policy (e.g., consensus, majority vote):
- Consensus

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):
- One team member will take notes as needed and publish them with other team members
in the Discord Channel and the Google Drive.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
- Expected to attend every meeting unless there is notice given to the team on standard
channels for their absence
- If abused for what is deemed not adequate reasoning will be treated like any other
infraction

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
- Expected to fulfill their assignments to a satisfactory level determined by the team, by the
assigned deadlines.
- If the deadline is not met, the team member is expected to have a justifiable reason, and if
determined to be excessively abused, will be treated as any other infraction.

3. Expected level of communication with other team members:
- Instant communication is not a requirement in this team. However, timely communication
to complete the assignment / project on time before the deadline is required.

4. Expected level of commitment to team decisions and tasks:
- Expected level of commitment to tasks is equal to the amount of time and effort required to
complete the task assigned to the team member. Members should make an effort to contribute to
team decisions, but not all members are required to contribute to all decisions.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):
- These roles should be the equal responsibility of everyone so as to have everyone have the
responsibility of keeping everyone else on track throughout the project.
- Client interaction should be done on a regular schedule or on a as needed basis.

2. Strategies for supporting and guiding the work of all team members:
- Regular interactions in discord when outside of meetings to help teammates with problems
that have arisen and/or questions that may arise. Also if someone is lacking due to a justifiable
reason, comments can be made in the discord asking for help.

3. Strategies for recognizing the contributions of all team members:
- Shoutouts in the team discord and/or team meetings.
- Emails if needed (TA, advisor, professors, etc.)

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.
- Tyler: I have work experience as a SOC Analyst (so Tier-1 investigative actions), I have
gotten my Security+ certification, and I am skilled in investigations on attack vectors, how attacks
work, and their consequences. I also gather threat intelligence so I am up to date with modern
attacks and zero days.
- Tommy: I have work experience involving the power grid as a substation engineer. I am
specializing in power systems for electrical engineering and have some experience in various coding
languages.
- Matthew: I have interned for two summers with a substation design firm for a company
specializing in grid solutions. My skills are power systems (grid analysis, substation design, t-line
modeling), experience with C and the Linux operating system. (currently taking a java course).
- Justin: I have done a lot of security work through my two internships with Principal
Financial Group. My skills are SIEM rule writing, Pentesting, Linux commands and coding (Java,
Python, C, Assembly, Terraform).
- Kaya: I interned with PwC’s red team over the summer and really enjoy the penetration
testing side of cybersecurity. My skills are comfortable with Linux, VMs, various Kali and
cybersecurity tools. Some C, Java, Python experience.
- Zach: My skills are Java, C, Python, VHDL programming. Windows and Unix system
programming. Cyber security network design. Cryptography analysis and programming.

2. Strategies for encouraging and support contributions and ideas from all team members:
- Fostering an open and supportive team environment. This includes being friendly and open
to ideas from other team members, encouraging other team members, and creating an effort to
actively include members who may seem more reserved.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity or
ability to contribute?)
- If the team member is comfortable, they should post a message in the team discord
channel, or directly with the person in question discussing the environment and how it makes them
feel.
- If the team member is not comfortable posting in the team-wide discord channel, the
member can bring the matter to the attention of either the team lead, or a team member they feel
the most comfortable with, and the team lead or other member can post in the discord channel to
create the discussion point with the team.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
- Ensure assignments/due dates are handled efficiently and before deadlines.
- Have a standard of communication that is met or exceeded throughout the semesters.
- Get the project done to a point that the team feels comfortable with.

2. Strategies for planning and assigning individual and team work:
- Dish out weekly and multi week assignments at team weekly meetings.
- Briefly discuss deadlines at least a week before the due date and assign people to tasks

Consequences for Not Adhering to Team Contract
- In weekly team meetings, discuss infractions and add them to a three-strike policy.
- Three-strike policy includes 2 warnings and an escalation to teaching staff.
- On the third strike escalate to the professor and/or TA asking for assistance.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) Zach Hirst DATE 9/6/23
2) Justin Templeton DATE 9/8/2023
3) Tyler Atkinson DATE 9/8/2023
4) Kaya Zdan DATE 9/7/2023
5) Thomas Keeshan DATE 9/10/2023
6) Matthew Nevin DATE 9/10/2023

